We introduce a generalised micro-macro Markov chain Monte Carlo (mM-MCMC) method with pseudo-marginal approximation to the free energy, that is able to accelerate sampling of the microscopic Gibbs distributions when there is a time-scale separation between the macroscopic dynamics of a reaction coordinate and the remaining microscopic degrees of freedom. The mM-MCMC method attains this efficiency by iterating four steps: i) Propose a new value of the reaction coordinate; ii) Accept or reject the macroscopic sample; iii) Run a biased simulation that creates a microscopic molecular instance that lies close to the newly sampled macroscopic reaction coordinate value; iv) Microscopic accept/reject step for the new microscopic sample. In the present paper, we eliminate the main computational bottleneck of earlier versions of this method: the necessity to have an accurate approximation of the free energy. We show that introduction of a pseudo-marginal approximation significantly reduces the computational cost of the microscopic accept/reject step, while still providing unbiased samples. We illustrate the method's behaviour on several molecular systems with low-dimensional reaction coordinates.


翻译:Translated Abstract: 我们引入了一种广义的微观-宏观马尔科夫链蒙特卡罗(mM-MCMC)方法,并采用伪边缘近似方法逼近自由能。当反应坐标的宏观动力学和剩余微观自由度之间存在时间尺度分离时,该方法能够加速对微观吉布斯分布的采样。mM-MCMC方法通过迭代四个步骤来实现这种效率:i)提出反应坐标的新值; ii)接受或拒绝宏观样本; iii)运行一个有偏置的模拟,创建一个微观分子实例,该实例接近新采样的宏观反应坐标值; iv)新微观样本的微观接受/拒绝步骤。在本文中,我们消除了该方法早期版本的主要计算瓶颈:准确逼近自由能的必要性。我们表明,伪边缘近似的引入显著降低了微观接受/拒绝步骤的计算成本,同时仍然提供无偏的样本。我们在具有低维反应坐标的几个分子系统上说明了该方法的行为。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
51+阅读 · 2020年12月10日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月15日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
51+阅读 · 2020年12月10日
相关资讯
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员