We study the problem of human action recognition using motion capture (MoCap) sequences. Unlike existing techniques that take multiple manual steps to derive standardized skeleton representations as model input, we propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences. The model uses a hierarchical transformer with intra-frame off-set attention and inter-frame self-attention. The attention mechanism allows the model to freely attend between any two vertex patches to learn non-local relationships in the spatial-temporal domain. Masked vertex modeling and future frame prediction are used as two self-supervised tasks to fully activate the bi-directional and auto-regressive attention in our hierarchical transformer. The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models on common MoCap benchmarks. Code is available at https://github.com/zgzxy001/STMT.


翻译:我们研究了使用动作捕捉(MoCap)序列进行人体动作识别的问题。与现有技术不同,需要多个手动步骤来导出标准化的骨骼表示作为模型输入,我们提出了一种新颖的空时网格转换器(STMT)来直接建模网格序列。该模型使用带有帧内偏移注意力和帧间自注意力的分层Transformer。注意机制允许模型自由地关注空时域中任意两个顶点块之间的非局部关系。遮蔽顶点建模和未来帧预测作为两个自监督任务,以完全激活我们的分层Transformer中的双向和自回归注意力。所提出的方法在常用的MoCap基准测试中实现了超越基于骨架和基于点云的模型的最新表现。代码可在https://github.com/zgzxy001/STMT 找到。

0
下载
关闭预览

相关内容

人大最新《基于Transformer 的视频语言预训练》综述论文
专知会员服务
45+阅读 · 2021年9月27日
专知会员服务
59+阅读 · 2021年3月17日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
【紫冬分享】基于人体骨架的行为识别
中国科学院自动化研究所
20+阅读 · 2019年1月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2022年2月23日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员