The fragile complexity of a comparison-based algorithm is $f(n)$ if each input element participates in $O(f(n))$ comparisons. In this paper, we explore the fragile complexity of algorithms adaptive to various restrictions on the input, i.e., algorithms with a fragile complexity parameterized by a quantity other than the input size n. We show that searching for the predecessor in a sorted array has fragile complexity ${\Theta}(\log k)$, where $k$ is the rank of the query element, both in a randomized and a deterministic setting. For predecessor searches, we also show how to optimally reduce the amortized fragile complexity of the elements in the array. We also prove the following results: Selecting the $k$-th smallest element has expected fragile complexity $O(\log \log k)$ for the element selected. Deterministically finding the minimum element has fragile complexity ${\Theta}(\log(Inv))$ and ${\Theta}(\log(Runs))$, where $Inv$ is the number of inversions in a sequence and $Runs$ is the number of increasing runs in a sequence. Deterministically finding the median has fragile complexity $O(\log(Runs) + \log \log n)$ and ${\Theta}(\log(Inv))$. Deterministic sorting has fragile complexity ${\Theta}(\log(Inv))$ but it has fragile complexity ${\Theta}(\log n)$ regardless of the number of runs.


翻译:基于比较的算法的复杂程度是 $f(n) 美元。 如果每个输入元素都以 $O(f(n)) 的比较方式参与, 则该算法的复杂程度是 $f(n) 美元 。 在本文中, 我们探索适应投入的各种限制的算法的脆弱复杂性, 即, 以输入大小以外的数量来选择脆弱的复杂度参数的算法。 我们显示, 在排序的阵列中寻找前身的复杂程度是 $@Theta}(\log k), 美元是查询元素的等级, 随机和确定性设置。 对于前身搜索, 我们还要展示如何以最佳方式减少阵列中元素的易易碎复杂性。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
12+阅读 · 2021年3月24日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员