As the application of deep learning continues to grow, so does the amount of data used to make predictions. While traditionally, big-data deep learning was constrained by computing performance and off-chip memory bandwidth, a new constraint has emerged: privacy. One solution is homomorphic encryption (HE). Applying HE to the client-cloud model allows cloud services to perform inference directly on the client's encrypted data. While HE can meet privacy constraints, it introduces enormous computational challenges and remains impractically slow in current systems. This paper introduces Cheetah, a set of algorithmic and hardware optimizations for HE DNN inference to achieve plaintext DNN inference speeds. Cheetah proposes HE-parameter tuning optimization and operator scheduling optimizations, which together deliver 79x speedup over the state-of-the-art. However, this still falls short of plaintext inference speeds by almost four orders of magnitude. To bridge the remaining performance gap, Cheetah further proposes an accelerator architecture that, when combined with the algorithmic optimizations, approaches plaintext DNN inference speeds. We evaluate several common neural network models (e.g., ResNet50, VGG16, and AlexNet) and show that plaintext-level HE inference for each is feasible with a custom accelerator consuming 30W and 545mm^2.


翻译:随着深层次学习的应用继续增长,用于预测的数据数量也在继续增长。虽然在传统上,大数据深层次学习受到计算性能和离芯内存带宽度的限制,但出现了一个新的制约因素:隐私。一个解决办法是同质加密(HE)。将He应用到客户库模型,使云层服务能够直接对客户加密数据进行推断。虽然HE可以满足隐私限制,但它带来了巨大的计算挑战,并且在当前系统中仍然不切实际地缓慢。本文介绍了Cheetah,这是一套HE DNN的算法和硬件优化,以达到平文本 DNN的推断速度。Cheetah建议HE-parater调整优化和操作员调度优化,共同提供79x速度,高于最新版。然而,这仍然比普通的推断速度少了近四级。为了缩小其余的性能差距,Cheetaher进一步提出一个加速器结构,在结合算法优化、接近平文本 DNNNNN的推断速度的同时,我们评估了HE-50网络的每个通用模型和平流层AVIF。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
61+阅读 · 2020年3月19日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
61+阅读 · 2020年3月19日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员