Homomorphic encryption (HE) draws huge attention as it provides a way of privacy-preserving computations on encrypted messages. Number Theoretic Transform (NTT), a specialized form of Discrete Fourier Transform (DFT) in the finite field of integers, is the key algorithm that enables fast computation on encrypted ciphertexts in HE. Prior works have accelerated NTT and its inverse transformation on a popular parallel processing platform, GPU, by leveraging DFT optimization techniques. However, these GPU-based studies lack a comprehensive analysis of the primary differences between NTT and DFT or only consider small HE parameters that have tight constraints in the number of arithmetic operations that can be performed without decryption. In this paper, we analyze the algorithmic characteristics of NTT and DFT and assess the performance of NTT when we apply the optimizations that are commonly applicable to both DFT and NTT on modern GPUs. From the analysis, we identify that NTT suffers from severe main-memory bandwidth bottleneck on large HE parameter sets. To tackle the main-memory bandwidth issue, we propose a novel NTT-specific on-the-fly root generation scheme dubbed on-the-fly twiddling (OT). Compared to the baseline radix-2 NTT implementation, after applying all the optimizations, including OT, we achieve 4.2x speedup on a modern GPU.


翻译:基因加密( HH) 引起极大注意, 因为它为加密信件提供了一种隐私保存计算方法。 数字理论变换( NTT) 是一种在有限整数字段中分解 Fleier 变换( DFT) 的专门形式, 是能够快速计算高超加密密码文本的关键算法。 先前的工作通过利用 DFT 优化技术, 加速了NTT 及其在流行的平行处理平台 GPU 上的反向变换。 然而, 这些基于 GPU 的研究缺乏对 NTT 和 DFT 之间主要差异的综合分析, 或只考虑在不解密情况下可以进行计算操作的数量有严格限制的小 HE参数。 在本文中, 我们分析NTT和 DFT的算法特性, 并在我们应用现代GPUP通常适用于 DFT 和 NTTT 的优化时评估NTT的性能。 我们从分析中发现, NTTT在大型 HE 参数组上存在严重主模带带带带宽的瓶瓶。 要处理主带宽带宽带宽的问题, 要解决主带宽带带宽问题, 我们提议在新NTTTTTTTTF-2 底基底底线上执行NTBLOBLU- broft- 底基底基底线上, 上, 我们底基底基底线。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
已删除
将门创投
3+阅读 · 2019年10月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员