We focus on the problem of developing energy efficient controllers for quadrupedal robots. Animals can actively switch gaits at different speeds to lower their energy consumption. In this paper, we devise a hierarchical learning framework, in which distinctive locomotion gaits and natural gait transitions emerge automatically with a simple reward of energy minimization. We use reinforcement learning to train a high-level gait policy that specifies gait patterns of each foot, while the low-level whole-body controller optimizes the motor commands so that the robot can walk at a desired velocity using that gait pattern. We test our learning framework on a quadruped robot and demonstrate automatic gait transitions, from walking to trotting and to fly-trotting, as the robot increases its speed. We show that the learned hierarchical controller consumes much less energy across a wide range of locomotion speed than baseline controllers.
翻译:我们集中关注为四重机器人开发节能控制器的问题。 动物可以以不同的速度积极交换音节, 降低它们的能源消耗。 在本文中, 我们设计了一个等级学习框架, 通过简单的能源最小化奖励, 使独特的运动曲目和自然步步转换自动出现。 我们使用强化学习来训练一个高层次的行步政策, 具体规定每只脚的行走模式, 而低级别的全机控制器则优化运动命令, 以使机器人能够使用这种动作模式以理想的速度行走。 我们用四重机器人测试我们的学习框架, 并演示自动步步态转变, 从行进到行进和飞步, 随着机器人加快速度。 我们显示, 学习的上层控制器比基线控制器消耗的能量要少得多。