Geometric reasoning remains a core challenge for Multimodal Large Language Models (MLLMs). Even the most advanced closed-source systems, such as GPT-O3 and Gemini-2.5-Pro, still struggle to solve geometry problems reliably, despite exhibiting strong textual reasoning abilities on tasks like the International Mathematical Olympiad (IMO). This gap suggests that the bottleneck lies in understanding geometric diagrams rather than reasoning itself. Since geometric figures can often be faithfully described in concise textual form, converting visual content into captions offers a promising direction. Motivated by this insight, we introduce CapGeo, a caption-assisted reasoning framework that bridges visual and textual modalities. Experiments show substantial improvements when models are equipped with captions: Qwen2.5-VL-72B improves from 8.6% (vision-only) to 59.0%, while Claude-Opus-4 rises from 44.8% to 73.0%. To systematically evaluate and identify high-quality geometric captioning models, we further propose CapGeo-Bench, a dataset of 4,641 curated figure-caption pairs. Crucially, CapGeo-Bench incorporates a keypoint-based evaluation metric that correlates strongly with downstream CapGeo performance, enabling reliable assessment of geometric captioning ability. Together, our framework and benchmark highlight a new pathway toward advancing geometric reasoning in MLLMs.
翻译:暂无翻译