We show that there is no $2^{o(k^2)} n^{O(1)}$ time algorithm for Independent Set on $n$-vertex graphs with rank-width $k$, unless the Exponential Time Hypothesis (ETH) fails. Our lower bound matches the $2^{O(k^2)} n^{O(1)}$ time algorithm given by Bui-Xuan, Telle, and Vatshelle [Discret.~Appl.~Math., 2010] and it answers the open question of Bergougnoux and Kant\'{e} [SIAM J. Discret. Math.,~2021]. We also show that the known $2^{O(k^2)} n^{O(1)}$ time algorithms for Weighted Dominating Set, Maximum Induced Matching and Feedback Vertex Set parameterized by rank-width $k$ are optimal assuming ETH. Our results are the first tight ETH lower bounds parameterized by rank-width that do not follow directly from lower bounds for $n$-vertex graphs.
翻译:我们显示,单元值为1美元(k)2美元(n ⁇ 1美元)的“独立设置”的时间算法没有2美元(美元),除非“指数时间假设”失败。我们的下限匹配了“Bui-Xuan”、“Telle”和“Vatshelle”给出的“Discret.~Appl.~Math.,2010年”),它回答了“Bergougnoux”和“Kant\'e}[SSIAM J. Discret. Math.,~ 2021]的开放问题。我们还显示,已知的“O(k)2)%(k)”和“Wight-Domination Set”、“最大引入的匹配和反馈“Vetex Set ”的时间算法是假设“ETH”的最佳办法。我们的结果是“equ-width”的“Ehet”下限参数,它不是直接从“$-gn-verex”图形的下框中得出。