We develop and justify methodology to consistently test for long-horizon return predictability based on realized variance. To accomplish this, we propose a parametric transaction-level model for the continuous-time log price process based on a pure jump point process. The model determines the returns and realized variance at any level of aggregation with properties shown to be consistent with the stylized facts in the empirical finance literature. Under our model, the long-memory parameter propagates unchanged from the transaction-level drift to the calendar-time returns and the realized variance, leading endogenously to a balanced predictive regression equation. We propose an asymptotic framework using power-law aggregation in the predictive regression. Within this framework, we propose a hypothesis test for long horizon return predictability which is asymptotically correctly sized and consistent.
翻译:为了实现这一目标,我们提出了一个基于纯跳点过程的连续时间日志价格进程的参数交易水平模型。模型确定任何一级总和的回报率和实际差异,其属性显示与经验金融文献中的典型事实相一致。根据我们的模型,长期模型参数从交易水平漂移到日历时间回报率和已实现差异之间没有变化,导致内在形成平衡的预测回归方程式。我们提出了一个在预测回归过程中使用权力法汇总的无参数框架。在此框架内,我们提出了长期前景回报假设测试,该假设的大小和一致性都一样正确。