This paper proposes a set of rules to revise various neural networks for 3D point cloud processing to rotation-equivariant quaternion neural networks (REQNNs). We find that when a neural network uses quaternion features under certain conditions, the network feature naturally has the rotation-equivariance property. Rotation equivariance means that applying a specific rotation transformation to the input point cloud is equivalent to applying the same rotation transformation to all intermediate-layer quaternion features. Besides, the REQNN also ensures that the intermediate-layer features are invariant to the permutation of input points. Compared with the original neural network, the REQNN exhibits higher rotation robustness.
翻译:本文提出一套规则,用于修改3D点云处理的各种神经网络,将其修改为旋转-等离四神经网络。我们发现,当神经网络在某些条件下使用四环特性时,网络特性自然具有旋转-等异属性。旋转等同意味着对输入点云进行特定的旋转转换等于对所有中层四环特性应用同样的旋转转换。此外,REQNN还确保中间层特性与输入点的变异性不相适应。与原始神经网络相比,REQN显示更高的旋转强度。