High-dimensional complex multi-parameter problems are prevalent in engineering, exceeding the capabilities of traditional surrogate models designed for low/medium-dimensional problems. These models face the curse of dimensionality, resulting in decreased modeling accuracy as the design parameter space expands. Furthermore, the lack of a parameter decoupling mechanism hinders the identification of couplings between design variables, particularly in highly nonlinear cases. To address these challenges and enhance prediction accuracy while reducing sample demand, this paper proposes a PC-Kriging-HDMR approximate modeling method within the framework of Cut-HDMR. The method leverages the precision of PC-Kriging and optimizes test point placement through a multi-stage adaptive sequential sampling strategy. This strategy encompasses a first-stage adaptive proportional sampling criterion and a second-stage central-based maximum entropy criterion. Numerical tests and a practical application involving a cantilever beam demonstrate the advantages of the proposed method. Key findings include: (1) The performance of traditional single-surrogate models, such as Kriging, significantly deteriorates in high-dimensional nonlinear problems compared to combined surrogate models under the Cut-HDMR framework (e.g., Kriging-HDMR, PCE-HDMR, SVR-HDMR, MLS-HDMR, and PC-Kriging-HDMR); (2) The number of samples required for PC-Kriging-HDMR modeling increases polynomially rather than exponentially as the parameter space expands, resulting in substantial computational cost reduction; (3) Among existing Cut-HDMR methods, no single approach outperforms the others in all aspects. However, PC-Kriging-HDMR exhibits improved modeling accuracy and efficiency within the desired improvement range compared to PCE-HDMR and Kriging-HDMR, demonstrating robustness.
翻译:暂无翻译