Image schema is a recurrent pattern of reasoning where one entity is mapped into another. Image schema is similar to conceptual metaphor and is also related to metaphoric gesture. Our main goal is to generate metaphoric gestures for an Embodied Conversational Agent. We propose a technique to learn the vector representation of image schemas. As far as we are aware of, this is the first work which addresses that problem. Our technique uses Ravenet et al's algorithm which we use to compute the image schemas from the text input and also BERT and SenseBERT which we use as the base word embedding technique to calculate the final vector representation of the image schema. Our representation learning technique works by clustering: word embedding vectors which belong to the same image schema should be relatively closer to each other, and thus form a cluster. With the image schemas representable as vectors, it also becomes possible to have a notion that some image schemas are closer or more similar to each other than to the others because the distance between the vectors is a proxy of the dissimilarity between the corresponding image schemas. Therefore, after obtaining the vector representation of the image schemas, we calculate the distances between those vectors. Based on these, we create visualizations to illustrate the relative distances between the different image schemas.
翻译:图像模型是一个实体被映射到另一个实体的反复的推理模式。 图像模型类似于概念隐喻, 也与隐喻手势相关。 我们的主要目标是为一个 Embodied conversation Agenter 生成隐喻手势。 我们提出一种方法来学习图像模型的矢量代表。 据我们所知, 这是第一个解决这个问题的方法。 我们的技术使用Ravenet et als 算法, 我们用它来计算文本输入中的图像系统, 以及 BERT 和 SenseBERT 。 我们用它作为基词嵌入技术来计算图像模型的最后矢量代表。 我们的代表学习技术通过分组工作: 嵌入同一图像模型中的矢量的单词应该相对接近, 从而形成一个群。 我们的图像模型可以作为矢量代表, 也有可能有一种概念, 某些图像模型的形状与其它的模型更加接近或更加相似, 因为矢量之间的距离是这些矢量的比值的代号。 因此, 在这些图像的距离之间, 我们的图像模型的距离之间, 在这些图像模型的距离上, 获取了我们所处的图像的图像的图像的距离。