Current camera image and signal processing pipelines (ISPs), including deep-trained versions, tend to apply a single filter that is uniformly applied to the entire image. This is despite the fact that most acquired camera images have spatially heterogeneous artifacts. This spatial heterogeneity manifests itself across the image space as varied Moire ringing, motion-blur, color-bleaching, or lens-based projection distortions. Moreover, combinations of these image artifacts can be present in small or large pixel neighborhoods, within an acquired image. Here, we present a deep reinforcement learning model that works in learned latent subspaces, and recursively improves camera image quality through a patch-based spatially adaptive artifact filtering and image enhancement. Our \textit{Recursive Self Enhancement Reinforcement Learning}(RSE-RL) model views the identification and correction of artifacts as a recursive self-learning and self-improvement exercise and consists of two major sub-modules: (i) The latent feature sub-space clustering/grouping obtained through variational auto-encoders enabling rapid identification of the correspondence and discrepancy between noisy and clean image patches. (ii) The adaptive learned transformation is controlled by a soft actor-critic agent that progressively filters and enhances the noisy patches using its closest feature distance neighbors of clean patches. Artificial artifacts that may be introduced in a patch-based ISP, are also removed through a reward-based de-blocking recovery and image enhancement. We demonstrate the self-improvement feature of our model by recursively training and testing on images, wherein the enhanced images resulting from each epoch provide a natural data augmentation and robustness to the RSE-RL training-filtering pipeline. Our method shows advantage for heterogeneous noise and artifact removal.


翻译:当前的相机图像和信号处理管道(ISPs),包括深层训练版本,往往会应用一个单一的强化学习模型,统一适用于整个图像。尽管大多数获得的相机图像都具有空间异质的工艺品。这种空间异质性在图像空间中表现为多变的Mouri铃声、运动蓝球、彩色分解或透镜投影扭曲。此外,这些图像工艺品的组合可以在一个获得的图像中存在于一个小或大像素周围。在这里,我们展示了一个深厚的强化学习模型,该模型在学习潜伏的子空间中工作,并通过一个基于补丁的空间适应性艺术过滤器过滤和图像增强图像的循环改善相机图像质量。我们的空间异变异性(SE-RL)模型将艺术品的识别和修正视为一种循环自学自我学习和自我简化练习练习,我们通过变异性自动变异性模型获得的潜伏地组合组合/组合,我们通过变异性自动变异性变异的自我变现和变异性变的变现,通过不断变的变异性变现的变的变现和变现的变现性变变的变现的变更、更、更变现的变现的变更的变现的变现,可以显示的变现的变更更更的变的变的变现的变现、更变的变的变的变的变的变的变现的变更变的变的变的变的变的变的变的变的变的变的变的变的变的变的变更的变更的变的变的变的变的变的变的变的变的变式、更的变的变的变的变的变的变更的变的变的变的变的变的变更的变的变的变的变的变的变的变更的变的变的变更的变的变的变的变的变的变更的变的变的变的变的变的变的变的变的变的变的变的变更更更更的变的变的变的变的变的变的变的变的变的变的变更的变的变的变的变的变的变的变的变的变的变的变的变的

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
18+阅读 · 2021年6月10日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员