Learning generic representations with deep networks requires massive training samples and significant computer resources. To learn a new specific task, an important issue is to transfer the generic teacher's representation to a student network. In this paper, we propose to use a metric between representations that is based on a functional view of neurons. We use optimal transport to quantify the match between two representations, yielding a distance that embeds some invariances inherent to the representation of deep networks. This distance defines a regularizer promoting the similarity of the student's representation with that of the teacher. Our approach can be used in any learning context where representation transfer is applicable. We experiment here on two standard settings: inductive transfer learning, where the teacher's representation is transferred to a student network of same architecture for a new related task, and knowledge distillation, where the teacher's representation is transferred to a student of simpler architecture for the same task (model compression). Our approach also lends itself to solving new learning problems; we demonstrate this by showing how to directly transfer the teacher's representation to a simpler architecture student for a new related task.


翻译:与深层网络的学习通用表达方式需要大量的培训样本和大量的计算机资源。 要学习一项新的具体任务, 一个重要的问题是将普通教师的表述方式转移到学生网络。 在本文中, 我们提议使用基于神经元功能视角的表达方式之间的衡量尺度。 我们使用最佳的运输方式量化两种表达方式之间的匹配, 产生一段距离, 隐藏着深层网络代表中固有的一些差异。 这个距离定义了促进学生代表方式与教师代表方式相似的常规化器。 我们的方法可以在任何适用代表方式的学习环境中使用。 我们在这里试验两种标准设置: 感化性转移学习, 将教师的代表方式转移到同一结构的学生网络, 用于一项新的相关任务; 和知识蒸馏, 将教师的代表方式转移给从事同样任务( 模型压缩) 简单结构的学生。 我们的方法还有助于解决新的学习问题。 我们通过展示如何直接将教师的代表方式转移到一个更简单的建筑型学生, 用于一项新的相关任务。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年4月15日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Contrastive Representation Distillation
Arxiv
5+阅读 · 2019年10月23日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
VIP会员
相关VIP内容
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员