Pre-processing and Data Augmentation play an important role in Deep Convolutional Neural Networks (DCNN). Whereby several methods aim for standardization and augmentation of the dataset, we here propose a novel method aimed to feed DCNN with spherical space transformed input data that could better facilitate feature learning compared to standard Cartesian space images and volumes. In this work, the spherical coordinates transformation has been applied as a preprocessing method that, used in conjunction with normal MRI volumes, improves the accuracy of brain tumor segmentation and patient overall survival (OS) prediction on Brain Tumor Segmentation (BraTS) Challenge 2020 dataset. The LesionEncoder framework has been then applied to automatically extract features from DCNN models, achieving 0.586 accuracy of OS prediction on the validation data set, which is one of the best results according to BraTS 2020 leaderboard.
翻译:预处理和数据增强在深革命神经网络(DCNN)中起着重要作用。 我们在此提出一种新颖的方法,旨在向DCNN提供球体空间转换输入数据,以便与标准笛卡尔空间图像和数量相比,能够更好地促进特征学习。在这项工作中,将球体坐标转换作为一种预处理方法,结合正常的MRI量使用,提高脑肿瘤分解的准确性和病人总体生存预测(OS)对2020年挑战数据集的大脑肿瘤分解(BRATS)的预测。 LesionEncoder框架随后用于自动提取DCNN模型的特征,使验证数据集的OS预测达到0.586的准确度,这是根据BRATS 2020 领导板(BRATS 2020) 的最佳结果之一。