Fine-tuning pre-trained models has recently yielded remarkable performance gains in graph neural networks (GNNs). In addition to pre-training techniques, inspired by the latest work in the natural language fields, more recent work has shifted towards applying effective fine-tuning approaches, such as parameter-efficient tuning (delta tuning). However, given the substantial differences between GNNs and transformer-based models, applying such approaches directly to GNNs proved to be less effective. In this paper, we present a comprehensive comparison of delta tuning techniques for GNNs and propose a novel delta tuning method specifically designed for GNNs, called AdapterGNN. AdapterGNN preserves the knowledge of the large pre-trained model and leverages highly expressive adapters for GNNs, which can adapt to downstream tasks effectively with only a few parameters, while also improving the model's generalization ability on the downstream tasks. Extensive experiments show that AdapterGNN achieves higher evaluation performance (outperforming full fine-tuning by 1.4% and 5.5% in the chemistry and biology domains respectively, with only 5% of its parameters tuned) and lower generalization gaps compared to full fine-tuning. Moreover, we empirically show that a larger GNN model can have a worse generalization ability, which differs from the trend observed in large language models. We have also provided a theoretical justification for delta tuning can improve the generalization ability of GNNs by applying generalization bounds.


翻译:最近,在图神经网络(GNNs)中微调预训练模型已经取得了显著的性能提升。除了预训练技术,受到最新的自然语言领域的工作的启发,更近期的工作已经转向应用有效的微调方法,如参数高效调整(delta tuning)。然而,由于GNNs和基于transformer的模型之间的显著差异,将这样的方法直接应用于GNNs被证明不太有效。在本文中,我们对GNNs的delta tuning技术进行了全面比较,并提出了一种专门为GNNs设计的新的delta tuning方法,称为AdapterGNN。AdapterGNN保留了大型预训练模型的知识,并利用高度表达力的适配器适应于GNNs的下游任务,只使用少量参数即可有效改善模型在下游任务上的泛化能力。大量实验表明,AdapterGNN在评估性能方面表现更好(化学和生物领域的性能分别比全面微调高1.4%和5.5%,只调整了其5%的参数),并且比全面微调具有低的泛化间隙。此外,我们还通过应用泛化边界实现了对于delta tuning如何提高GNNs的泛化能力的理论证明。我们还通过实验证明了更大的GNN模型可能具有更差的泛化能力,这与大型语言模型的趋势不同。

0
下载
关闭预览

相关内容

【AAAI2023】对抗性权重扰动提高图神经网络的泛化能力
专知会员服务
18+阅读 · 2022年12月12日
专知会员服务
43+阅读 · 2021年4月12日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
146+阅读 · 2020年6月28日
ICML2020 图神经网络的预训练
图与推荐
12+阅读 · 2020年4月4日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
【AAAI2023】对抗性权重扰动提高图神经网络的泛化能力
专知会员服务
18+阅读 · 2022年12月12日
专知会员服务
43+阅读 · 2021年4月12日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
146+阅读 · 2020年6月28日
相关资讯
ICML2020 图神经网络的预训练
图与推荐
12+阅读 · 2020年4月4日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员