Stable distributions are an important class of infinitely-divisible probability distributions, of which two special cases are the Cauchy distribution and the normal distribution. Aside from a few special cases, the density function for stable distributions has no known analytic form, and is expressible only through the variate's characteristic function or other integral forms. In this paper we present numerical schemes for evaluating the density function for stable distributions, its gradient, and distribution function in various parameter regimes of interest, some of which had no pre-existing efficient method for their computation. The novel evaluation schemes consist of optimized generalized Gaussian quadrature rules for integral representations of the density function, complemented by various asymptotic expansions near various values of the shape and argument parameters. We report several numerical examples illustrating the efficiency of our methods. The resulting code has been made available online.
翻译:稳定的分布是无限分散概率分布的重要类别, 其中两个特殊情况是 Cauchy 分布和正常分布。 除了少数特殊情况外, 稳定的分布的密度函数没有已知的分析形式, 并且只能通过变量的特性函数或其他整体形式来表达。 在本文中, 我们介绍了用于评估稳定分布的密度函数、 其梯度 和分布函数的数值方案, 在不同感兴趣的参数系统中, 有些参数系统没有预先存在的有效计算方法 。 新的评价方案包括优化通用的高斯梯度矩形规则, 以综合表示密度函数, 辅之以各种接近形状和参数的各种值的无药性扩展。 我们报告了一些数字示例, 说明我们方法的效率。 由此产生的代码已经在线提供 。