Density estimation plays a key role in many tasks in machine learning, statistical inference, and visualization. The main bottleneck in high-dimensional density estimation is the prohibitive computational cost and the slow convergence rate. In this paper, we propose novel estimators for high-dimensional non-parametric density estimation called the adaptive hyperbolic cross density estimators, which enjoys nice convergence properties in the mixed smooth Sobolev spaces. As modifications of the usual Sobolev spaces, the mixed smooth Sobolev spaces are more suitable for describing high-dimensional density functions in some applications. We prove that, unlike other existing approaches, the proposed estimator does not suffer the curse of dimensionality under Integral Probability Metric, including H\"older Integral Probability Metric, where Total Variation Metric and Wasserstein Distance are special cases. Applications of the proposed estimators to generative adversarial networks (GANs) and goodness of fit test for high-dimensional data are discussed to illustrate the proposed estimator's good performance in high-dimensional problems. Numerical experiments are conducted and illustrate the efficiency of our proposed method.
翻译:在机器学习、统计推断和可视化等许多任务中,密度估计起着关键作用。高维密度估计中的主要瓶颈是令人望而却步的计算成本和缓慢的趋同率。在本文中,我们提出了高维非参数密度估计的新颖估计值,称为适应性超曲交叉密度估计值,在混合的平滑空间中具有很好的趋同性。随着常规Sobolev空间的改变,混合的平滑索博列夫空间更适合描述某些应用中的高维密度功能。我们证明,与其他现有方法不同,拟议的估计值并不在综合可测度计量下受到维度的诅咒,包括H\"older Integral Probility Metic,这里的全增分数计量和瓦塞斯坦距离是特例。讨论拟议的估计值对基因化对抗网络的应用以及高维度数据适当测试的优劣性测试,以说明拟议的估测算员在高维度问题中的良好表现。进行了数值实验,并展示了我们拟议方法的效率。