There are various metrics for researching error-correcting codes. Especially, high-density data storage system gives the existence of inconsistency for the reading and writing process. The symbol-pair metric is motivated for outputs that have overlapping pairs of symbols in a certain channel. The Rosenbloom-Tsfasman (RT) metric is introduced since there exists a problem that is related to transmission over several parallel communication channels with some channels not available for the transmission. In this paper, we determine the minimum symbol-pair weight and RT weight of repeated-root cyclic codes over $\mathfrak R=\Bbb F_{p^m}[u]/\langle u^4\rangle$ of length $n=p^k$. For the determination, we explicitly present third torsional degree for all different types of cyclic codes over $\mathfrak R$ of length $n$.
翻译:研究错误校正代码有多种衡量标准。 特别是, 高密度数据存储系统显示读写过程存在不一致。 符号- 纸质衡量标准针对的是某一频道内有重叠符号对数的产出。 采用了 Rosenbloom- Tsfasman (RT) 衡量标准, 因为存在通过多个平行通信渠道传输的问题, 有些频道无法传输。 在本文中, 我们确定了超过$\mathfrak Ráb F ⁇ p ⁇ m}[u] /\qangle u ⁇ 4\rangle$$n=p ⁇ k$的重复根周期代码的最小符号- 重量和 RT 重量。 为了确定这一点, 我们明确为长度为$\ mathfrak R$ 以上的所有不同类型的自行车代码提供第三至高度的学位。