Score-based generative models exhibit state of the art performance on density estimation and generative modeling tasks. These models typically assume that the data geometry is flat, yet recent extensions have been developed to synthesize data living on Riemannian manifolds. Existing methods to accelerate sampling of diffusion models are typically not applicable in the Riemannian setting and Riemannian score-based methods have not yet been adapted to the important task of interpolation of datasets. To overcome these issues, we introduce \emph{Riemannian Diffusion Schr\"odinger Bridge}. Our proposed method generalizes Diffusion Schr\"odinger Bridge introduced in \cite{debortoli2021neurips} to the non-Euclidean setting and extends Riemannian score-based models beyond the first time reversal. We validate our proposed method on synthetic data and real Earth and climate data.
翻译:基于分数的基因化模型展示了密度估计和基因化模型任务的最新性能。这些模型通常假定数据几何是平坦的,但最近又开发了扩展,以综合生活在里曼多元体上的数据。现有的加速扩散模型抽样的方法通常不适用于里曼尼安环境,而基于里曼尼安分数的方法尚未适应数据集内插的重要任务。为了克服这些问题,我们引入了\emph{Riemannian Difmissution Schr\\'odinger Bridge}。我们在\cite{debortoli2021Neurrips}中引入的拟议方法将Difmission Schr\\'odinger Bridge 普遍化为非欧克里曼环境,并将里曼积分模型扩展到第一次逆转之后。我们验证了我们关于合成数据和实际地球和气候数据的拟议方法。