The Matern family of covariance functions is currently the most commonly used for the analysis of geostatistical data due to its ability to describe different smoothness behaviors. Yet, in many applications the smoothness parameter is set at an arbitrary value. This practice is due partly to computational challenges faced when attempting to estimate all covariance parameters and partly to unqualified claims in the literature stating that geostatistical data have little or no information about the smoothness parameter. This work critically investigates this claim and shows it is not true in general. Specifically, it is shown that the information the data have about the correlation parameters varies substantially depending on the true model and sampling design and, in particular, the information about the smoothness parameter can be large, in some cases larger than the information about the range parameter. In light of these findings, we suggest to reassess the aforementioned practice and instead establish inferences from data-based estimates of both range and smoothness parameters, especially for strongly dependent non-smooth processes observed on irregular sampling designs. A data set of daily rainfall totals is used to motivate the discussion and gauge this common practice.
翻译:共变函数的母体系目前是用于分析地理统计数据的最常用方法,因为它能够描述不同的顺畅行为。然而,在许多应用中,顺畅参数被设定为任意的价值。这种做法部分是由于试图估算所有常态参数时遇到的计算挑战,部分是由于文献中的不合格主张,指出地理统计数据很少或根本没有关于顺畅参数的信息。这项工作严格地调查了这一主张,并表明它一般不属实。具体地说,显示这些数据关于相关参数的信息因真实模型和抽样设计而有很大差异,特别是,关于顺畅参数的信息可能很大,在某些情况下大于关于范围参数的信息。根据这些调查结果,我们建议重新评估上述做法,而不是从基于数据的估计范围参数和顺畅参数中得出不完全依赖的推论,特别是在不规则采样设计中观察到的非湿度过程。每日降雨总量数据集被用于激发讨论,并测量这一共同做法。