Relation Extraction (RE) refers to extracting the relation triples in the input text. Existing neural work based systems for RE rely heavily on manually labeled training data, but there are still a lot of domains where sufficient labeled data does not exist. Inspired by the distance-based few-shot named entity recognition methods, we put forward the definition of the few-shot RE task based on the sequence tagging joint extraction approaches, and propose a few-shot RE framework for the task. Besides, we apply two actual sequence tagging models to our framework (called Few-shot TPLinker and Few-shot BiTT), and achieves solid results on two few-shot RE tasks constructed from a public dataset.
翻译:关系提取( RE) 指的是在输入文本中提取三重关系。 现有的神经工作系统在很大程度上依赖于人工标签的培训数据, 但仍有许多领域没有贴上足够的标签的数据。 在基于远程的几发标记实体识别方法的启发下, 我们根据联合提取方法的标记顺序提出了“ 几发” 任务的定义, 并为任务提出了一个“ 几发” 的 RE 框架。 此外, 我们对我们的框架应用了两种实际序列标记模型( 称为“ 少发 TPLinker ” 和“ 少发 BITT ”), 并且从一个公共数据集中构建了两个“ 几发 RE ” 任务, 并取得了扎实的结果 。