项目名称: 不同形式背景的统一模型构造及其属性约简方法
项目编号: No.61202206
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 计算机科学学科
项目作者: 王霞
作者单位: 浙江海洋学院
项目金额: 23万元
中文摘要: 概念格理论对于数据分析、知识发现与知识处理是一种非常有效的方法。本项目主要研究不同形式背景的统一模型构造及其属性约简的方法。主要研究内容有:(1)基于现有的概念格和粗糙集理论,研究不协调决策形式背景的概念格属性约简及规则提取的方法;(2)研究基于不同形式背景的概念格属性约简的新方法,实现概念格的属性约简方法与粗糙集的属性约简方法的统一;(3)研究无决策形式背景、协调和不协调决策形式背景的统一模型以及统一的概念格属性约简方法。 本项目所涉及的研究内容是人工智能领域的热点问题,解决这些问题不仅对信息科学本身的发展具有重要的理论价值,而且在生物信息工程、医学、化学、管理科学和智能材料等领域都有广泛的应用前景。
中文关键词: 概念格;粗糙集;属性约简;规则提取;
英文摘要: The theory of concept lattice is an effective tool for data analysis,knowledge discovery and knowledge representation. In this project, we will construct a unified model for different formal contexts and propose an attribute reduction method for the unified model. This project mainly includes the following three aspects: (1) To propose approaches to attribute reduction and rule extraction of inconsistent formal decision contexts based on the current concept lattice and rough set theory;(2) To find new approaches to attribute reduction of differnet formal contexts in order to obtain the same attribute reduction expression of concept lattice with rough set theory;(3) To construct a unified model for formal contexts, consistent and inconsistent formal decision contexts and develop an approach to attribute reduction of the unified model. The contents involved in this project are all hot spots in area of artificial intelligence. It has important theoretical value for Information Science and wide applications in the future in Biologic Information Engineering, Medicine, Chemistry, Management Science, Intelligent Material and so on.
英文关键词: concept lattice;rough set;attribute reduction;rule extraction;