This paper concerns with statistical estimation and inference for the ranking problems based on pairwise comparisons with additional covariate information such as the attributes of the compared items. Despite extensive studies, few prior literatures investigate this problem under the more realistic setting where covariate information exists. To tackle this issue, we propose a novel model, Covariate-Assisted Ranking Estimation (CARE) model, that extends the well-known Bradley-Terry-Luce (BTL) model, by incorporating the covariate information. Specifically, instead of assuming every compared item has a fixed latent score $\{\theta_i^*\}_{i=1}^n$, we assume the underlying scores are given by $\{\alpha_i^*+{x}_i^\top\beta^*\}_{i=1}^n$, where $\alpha_i^*$ and ${x}_i^\top\beta^*$ represent latent baseline and covariate score of the $i$-th item, respectively. We impose natural identifiability conditions and derive the $\ell_{\infty}$- and $\ell_2$-optimal rates for the maximum likelihood estimator of $\{\alpha_i^*\}_{i=1}^{n}$ and $\beta^*$ under a sparse comparison graph, using a novel `leave-one-out' technique (Chen et al., 2019) . To conduct statistical inferences, we further derive asymptotic distributions for the MLE of $\{\alpha_i^*\}_{i=1}^n$ and $\beta^*$ with minimal sample complexity. This allows us to answer the question whether some covariates have any explanation power for latent scores and to threshold some sparse parameters to improve the ranking performance. We improve the approximation method used in (Gao et al., 2021) for the BLT model and generalize it to the CARE model. Moreover, we validate our theoretical results through large-scale numerical studies and an application to the mutual fund stock holding dataset.
翻译:本文关注基于对等比较的统计估计和排序问题的推论, 以及额外的共变信息, 比如比较项目的属性。 尽管进行了广泛的研究, 很少有先前的文献在存在共变信息的更现实的环境下调查这一问题。 为了解决这个问题, 我们提出了一个新颖的模式, COvaliate- Assistance 排名估算( CARE) 模式, 通过纳入共变信息, 扩展众所周知的 Bradley- Terrey-Luce (BTL) 模式。 具体地说, 我们不用假设每个比较的项目都有固定的潜值 $@the_ i_ i_ i=1 $。 我们假设基础的分数是 $_ i_ i=1 美元 。 我们假设基础的分数是 $_ i_ testal_ breax lax lax modeal modeal deal legrestial exmodeal expressional_ a $_ $_ lax_ lax latitudeal_ extial exmodeal extial le le le le exmode le le le le le le le le le le le le le le le legal le le legal le le le le le le le le le le legalststststststststststststststststal le lestststststst lemental lemental legy, legy, lement le le lex lex lex lement lemental le le le le le le le le le le le le le le le le lemental lemental lemental lemental lemental lemental le le le le le le le le lemental lemental le le le lemental le le le le le le le le le