Meta-analysis is an important statistical technique for synthesizing the results of multiple studies regarding the same or closely related research question. So-called meta-regression extends meta-analysis models by accounting for studylevel covariates. Mixed-effects meta-regression models provide a powerful tool for evidence synthesis, by appropriately accounting for betweem-study heterogeneity. In fact, modelling the study effect in terms of random effects and moderators not only allows to examine the impact of the moderators, but often leads to more accurate estimates of the involved parameters. Nevertheless, due to the often small number of studies on a specific research topic, interactions are often neglected in meta-regression. In this work, we consider the research questions (i) how moderator interactions influence inference in mixed-effects meta-regression models and (ii) whether some inference methods are more reliable than others. Here, we review robust methods for confidence intervals in meta-regression models including interaction effects. These methods are based on the application of robust sandwich estimators for estimating the variance-covariance matrix of the vector of model coefficients. Furthermore, we compare different versions of these robust estimators in an extensive simulation study. We thereby investigate coverage and length of seven different confidence intervals under varying conditions. We conclude with some practical recommendations.
翻译:元分析是综合关于同一或密切相关的研究问题的多种研究结果的重要统计技术。所谓的元回归通过计算研究水平的共变性,扩展了元分析模型。混合效应元回归模型通过适当计算贝特韦姆研究的异质性,为证据综合提供了强有力的工具。事实上,以随机效应和主持人来模拟研究效果,不仅能够审查主持人的影响,而且往往能够更准确地估计所涉参数。然而,由于对特定研究专题的研究往往很少,在元回归中往往忽略了相互作用。在这项工作中,我们考虑研究问题:(一) 主持人的交互作用如何影响混合效应中混合效应的元回归模型的推断,以及(二) 某些推论方法是否比其他方法更可靠。我们在这里不仅审查元回归模型的可靠间隔方法,包括互动效应。这些方法的基础是应用稳健的三明治估测器来估计不同研究主题的变异性。我们根据不同的模型模型模型模型模型的模型的模型范围,对不同比例进行了我们对这些模型进行不同的分析。