Let $S$ be a rational projective surface given by means of a projective rational parametrization whose base locus satisfies a mild assumption. In this paper we present an algorithm that provides three rational maps $f,g,h:\mathbb{A}^2 --\to S\subset \mathbb{P}^n$ such that the union of the three images covers $S$. As a consequence, we present a second algorithm that generates two rational maps $f,\tilde{g}:\mathbb{A}^2 --\to S$, such that the union of their images covers the affine surface $S\cap \mathbb{A}^n$. In the affine case, the number of rational maps involved in the cover is in general optimal.
翻译:让$S$成为合理投影表面, 通过投影合理准美化, 其基本位置满足了一种温和的假设。 在本文中, 我们提出了一个算法, 提供三种合理映射 $f, g, h:\ mathbb{A\\\\\ to S\subset\ mathbb{P\ ⁇ n$, 这样三张图像的组合就覆盖了$S$。 因此, 我们提出第二个算法, 产生两张合理映射 $f,\ tilde{g}:\ mathb{A\\\\\\\ to S$, 他们的图像结合覆盖了 alphe 表面 $S\cap\ mathb{A\\ n$。 在折线中, 覆盖覆盖封面的合理映射图的数量大致是最佳的 。