A uniformizer of a binary relation is a function whose graph is contained in the relation and which is defined on the same domain as the relation. It is known that any rational relation of infinite words, i.e. a relation given as a transducer, admits a rational uniformizer. Although rational, those uniformizers are not necessarily well-behaved, in the sense that the $i$th letter of the output word may depend on the whole infinite input word. In other words, those uniformizers might not be continuous (for the Cantor topology). This paper addresses the question of whether rational relations of infinite words can be uniformized by continuous functions. On the negative side, continuous uniformizers might not exist in general and we prove that deciding their existence is algorithmically impossible. On the positive side, we exhibit a large class of rational relations of infinite words, called weakly deterministic rational relations, for which deciding whether a relation in this class admits a continuous uniformizer is an ExpTime-c problem. This class includes the known classes of deterministic rational relations and automatic relations of infinite words. As an application of the previous result, and by exploiting a connection between computability and continuity for rational functions of infinite words, we show a result on the synthesis of computable functions from specifications given as weakly deterministic rational relations. In particular, we show that deciding the existence of a computable uniformizer is ExpTime-c and if there is one, it is possible to effectively synthesize a deterministic two-way transducer computing it. This generalizes the classical setting of Church synthesis to asynchronous implementations which can arbitrarily delay the production of their output signals.


翻译:二进制关系的统一是一个函数,其图表包含在关系中,并且定义与关系相同的领域。众所周知,任何无限单词的合理关系,即作为转换器提供的某种关系,都承认合理的统一。虽然是合理的,但那些统一器不一定很好地遵守,因为产出单词的美元字母可能取决于整个无限输入单词。换句话说,这些统一器可能不是连续的(对坎托尔的地形学来说)。本文探讨无限单词的合理关系能否通过连续功能统一的问题。在负面方面,连续的统一器可能不存在,我们证明确定其存在是不可能的。在积极方面,我们展示了无限单词的大规模合理关系,要求薄弱的确定性理性关系可能取决于整个无限输入单词。为此,这些统一器可能不是连续的(对坎托尔的地形学来说)。这一类包括已知的确定性合理关系类别以及一个无限的信号的自动关系。在消极方面,持续的统一器可能存在,而我们通过运用前的精确性分析结果来展示它们之间的可变性关系,这是我们所显示的可变化性结果。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员