The univariate generalized extreme value (GEV) distribution is the most commonly used tool for analysing the properties of rare events. The ever greater utilization of Bayesian methods for extreme value analysis warrants detailed theoretical investigation, which has thus far been underdeveloped. Even the most basic asymptotic results are difficult to obtain because the GEV fails to satisfy standard regularity conditions. Here, we prove that the posterior distribution of the GEV parameter vector, given an independent and identically distributed sequence of observations, converges to a normal distribution centred at the true parameter. The proof necessitates analysing integrals of the GEV likelihood function over the entire parameter space, which requires considerable care because the support of the GEV density depends on the parameters in complicated ways.
翻译:单亚麻黄素普遍极端值分布是分析稀有事件特性的最常用工具。由于对巴伊西亚极端值分析方法的使用日益增多,因此需要进行详细的理论调查,而迄今为止这种调查还很不发达。即使是最基本的非抽量结果也很难获得,因为GEV未能满足标准的常规性条件。在这里,我们证明GEV参数矢量的后端分布,考虑到独立和分布相同的观测序列,与以真实参数为核心的正常分布相融合。证据要求对整个参数空间的GEV概率函数进行整体分析,这需要相当小心,因为对GEV密度的支持取决于复杂的参数。