Brain connectome analysis commonly compresses high-resolution brain scans (typically composed of millions of voxels) down to only hundreds of regions of interest (ROIs) by averaging within-ROI signals. This huge dimension reduction improves computational speed and the morphological properties of anatomical structures; however, it also comes at the cost of substantial losses in spatial specificity and sensitivity, especially when the signals exhibit high within-ROI heterogeneity. Oftentimes, abnormally expressed functional connectivity (FC) between a pair of ROIs caused by a brain disease is primarily driven by only small subsets of voxel pairs within the ROI pair. This article proposes a new network method for detection of voxel-pair-level neural dysconnectivity with spatial constraints. Specifically, focusing on an ROI pair, our model aims to extract dense sub-areas that contain aberrant voxel-pair connections while ensuring that the involved voxels are spatially contiguous. In addition, we develop sub-community-detection algorithms to realize the model, and the consistency of these algorithms is justified. Comprehensive simulation studies demonstrate our method's effectiveness in reducing the false-positive rate while increasing statistical power, detection replicability, and spatial specificity. We apply our approach to reveal: (i) voxel-wise schizophrenia-altered FC patterns within the salience and temporal-thalamic network from 330 participants in a schizophrenia study; (ii) disrupted voxel-wise FC patterns related to nicotine addiction between the basal ganglia, hippocampus, and insular gyrus from 3269 participants using UK Biobank data. The detected results align with previous medical findings but include improved localized information.
翻译:暂无翻译