The ongoing deployment of the Internet of Things (IoT)-based smart applications is spurring the adoption of machine learning as a key technology enabler. To overcome the privacy and overhead challenges of centralized machine learning, there has been a significant recent interest in the concept of federated learning. Federated learning offers on-device, privacy-preserving machine learning without the need to transfer end-devices data to a third party location. However, federated learning still has privacy concerns due to sensitive information inferring capability of the aggregation server using end-devices local learning models. Furthermore, the federated learning process might fail due to a failure in the aggregation server (e.g., due to a malicious attack or physical defect). Other than privacy and robustness issues, federated learning over IoT networks requires a significant amount of communication resources for training. To cope with these issues, we propose a novel concept of dispersed federated learning (DFL) that is based on the true decentralization. We opine that DFL will serve as a practical implementation of federated learning for various IoT-based smart applications such as smart industries and intelligent transportation systems. First, the fundamentals of the DFL are presented. Second, a taxonomy is devised with a qualitative analysis of various DFL schemes. Third, a DFL framework for IoT networks is proposed with a matching theory-based solution. Finally, an outlook on future research directions is presented.


翻译:正在部署基于Tings Internet(IoT)的智能应用软件,这促使人们采用机器学习作为关键的技术促进器。为了克服中央机器学习的隐私和间接费用挑战,最近对联合学习的概念产生了浓厚的兴趣。联邦学习提供在设备上提供隐私保护机学习,而无需将终端设备数据转移到第三方所在地。然而,由于综合服务器使用终端设备的地方学习模型敏感信息推断能力,联合学习仍然有隐私问题。此外,由于集成服务器的失败(例如,由于恶意攻击或物理缺陷),联合学习进程可能会失败。除了隐私和稳健问题之外,在IoT网络上进行联合学习需要大量的通信资源用于培训。为了解决这些问题,我们提出了一个基于真正的权力下放的分散的节能学习新概念。我们认为,DFLL将作为基于IOT的各种智能应用的节能学习的实际实施。 一种基于智能前景模型的FLFLA系统,最后是基础的FLFLA理论。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
116+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
0+阅读 · 2021年8月20日
Multi-Center Federated Learning
Arxiv
0+阅读 · 2021年8月19日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Top
微信扫码咨询专知VIP会员