Computed Tomography Angiography is a key modality providing insights into the cerebrovascular vessel tree that are crucial for the diagnosis and treatment of ischemic strokes, in particular in cases of large vessel occlusions (LVO). Thus, the clinical workflow greatly benefits from an automated detection of patients suffering from LVOs. This work uses convolutional neural networks for case-level classification trained with elastic deformation of the vessel tree segmentation masks to artificially augment training data. Using only masks as the input to our model uniquely allows us to apply such deformations much more aggressively than one could with conventional image volumes while retaining sample realism. The neural network classifies the presence of an LVO and the affected hemisphere. In a 5-fold cross validated ablation study, we demonstrate that the use of the suggested augmentation enables us to train robust models even from few data sets. Training the EfficientNetB1 architecture on 100 data sets, the proposed augmentation scheme was able to raise the ROC AUC to 0.85 from a baseline value of 0.56 using no augmentation. The best performance was achieved using a 3D-DenseNet yielding an AUC of 0.87. The augmentation had positive impact in classification of the affected hemisphere as well, where the 3D-DenseNet reached an AUC of 0.93 on both sides.


翻译:合成成像成像成像成像仪是一种关键模式,它能提供对脑血管容器树的深入了解,对于诊断和治疗缺血性中风至关重要,特别是对于大型船舶封闭(LVO)而言。因此,临床工作流程极大地受益于对受LVO影响的病人的自动检测。这项工作使用对容器树分解面罩弹性变形进行病例分类培训的进化神经神经网络,人工增加培训数据。只有将面具作为我们模型的独特输入,才能使我们在保留样板现实主义的同时,对常规图像量应用这种变形能力要大得多。神经网络将LVO和受影响半球的存在分类。在一项经过5倍交叉验证的扩展研究中,我们证明,建议的扩增能使我们甚至能够从几套数据集中培养稳健的模型。在100个数据集上培训高效的NetB1结构,拟议的扩增计划能够将ROC ACUC从一个0.56的基线值提高到0.85,而不用加增增缩。利用3的图像量样本网络将LVO-DE-DE-DE-DE-DE-DE-DE-DE-AUC-AMANS-SAAL-SAIC-SAAL-SAAL-SAAL-SAAL-SAIC-SAIC-SAIC-SAY ASAL-SAAL-SAAL-SAAL-SAY ASY ASY ASY AS-SAY-SAY AS-A-A-A-A-SA-SA-A-SA-SA-SA-SA-SA-SA-SA-SA-SA-SAY-SAMA-SA-SA-SAMA-SAY-SAY-SAY-SAY-SA-SA-SAY-SAY-SAY-SA-SAY-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-SA-

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员