Most existing scene text detectors focus on detecting characters or words that only capture partial text messages due to missing contextual information. For a better understanding of text in scenes, it is more desired to detect contextual text blocks (CTBs) which consist of one or multiple integral text units (e.g., characters, words, or phrases) in natural reading order and transmit certain complete text messages. This paper presents contextual text detection, a new setup that detects CTBs for better understanding of texts in scenes. We formulate the new setup by a dual detection task which first detects integral text units and then groups them into a CTB. To this end, we design a novel scene text clustering technique that treats integral text units as tokens and groups them (belonging to the same CTB) into an ordered token sequence. In addition, we create two datasets SCUT-CTW-Context and ReCTS-Context to facilitate future research, where each CTB is well annotated by an ordered sequence of integral text units. Further, we introduce three metrics that measure contextual text detection in local accuracy, continuity, and global accuracy. Extensive experiments show that our method accurately detects CTBs which effectively facilitates downstream tasks such as text classification and translation. The project is available at https://sg-vilab.github.io/publication/xue2022contextual/.


翻译:大多数现有场景文本检测器侧重于检测由于缺少背景信息而只捕捉部分文字信息的字符或字词。为了更好地了解场景文本,我们更希望检测由自然阅读顺序中一个或多个整体文本单位(例如字符、文字或短语)组成的背景文本区块(CTBs),并传送某些完整的文本信息。本文介绍背景文本检测,这是检测CTBs以更好地了解场景文本的新设置。我们通过双重检测任务制定新的设置,首先检测整体文本单位,然后将其分组为 CTB。为此,我们设计了一个新的场景文本组群技术,将整体文本单位作为符号和组(属于相同的 CTBs),按顺序排列。此外,我们创建了两个数据集SCUT-CTW-Context 和 ReCTS-Ctext, 以便利今后的研究, 每一个CTBC20/CTruple 都有一个固定顺序的附加说明。 此外,我们引入了三个指标,用本地准确度、连续性和全球准确度衡量背景文本检测、连续性和全球准确度衡量背景文本检测结果的C-bbbralalalalalalal 。 实验显示我们的方法,在下游/caltalalalbs 的分类中可以有效检测的C-calmalmalals。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
11+阅读 · 2022年3月16日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员