This work proposes and analyzes an efficient numerical method for solving the nonlinear Schr\"odinger equation with quasiperiodic potential, where the projection method is applied in space to account for the quasiperiodic structure and the Strang splitting method is used in time.While the transfer between spaces of low-dimensional quasiperiodic and high-dimensional periodic functions and its coupling with the nonlinearity of the operator splitting scheme make the analysis more challenging. Meanwhile, compared to conventional numerical analysis of periodic Schr\"odinger systems, many of the tools and theories are not applicable to the quasiperiodic case. We address these issues to prove the spectral accuracy in space and the second-order accuracy in time. Numerical experiments are performed to substantiate the theoretical findings.
翻译:暂无翻译