Projection-based model order reduction of an ordinary differential equation (ODE) results in a projected ODE. Based on this ODE, an existing reduced-order model (ROM) for finite volume discretizations satisfies the underlying conservation law over arbitrarily chosen subdomains. However, this ROM does not satisfy the projected ODE exactly but introduces an additional perturbation term. In this work, we propose a novel ROM with the same subdomain conservation properties which indeed satisfies the projected ODE exactly. We apply this ROM to the incompressible Navier-Stokes equations and show with regard to the mass equation how the novel ROM can be constructed to satisfy algebraic constraints. Furthermore, we show that the resulting mass-conserving ROM allows us to derive kinetic energy conservation and consequently nonlinear stability, which was not possible for the existing ROM due to the presence of the perturbation term.
翻译:以预测为基础的普通差分方程模型(ODE)的降序模型(ROD)将产生预测的ODE。基于这个ODE,现有的有限体积分解减序模型(ROM)满足了对任意选定的子域的基本养护法。然而,这个ROM并不完全满足预测的ODE,而是增加了一个扰动术语。在这项工作中,我们提议了一个带有同一子体积保护特性的小说ROM,这确实满足了预测的ODE。我们把这个ROM应用到不可压缩的导航-斯托克斯方程中,并展示了小体积方程是如何建造以满足变形制约的。此外,我们表明由此形成的大规模节能ROM使我们得以产生动能节能,并因此产生了非线性稳定性,由于存在扰动术语,现有ROM是不可能实现的。