A $k$-edge-weighting of $G$ is a mapping $\omega:E(G)\longrightarrow \{1,\ldots,k\}$. The edge-weighting of $G$ naturally induces a vertex-colouring $\sigma_{\omega}:V(G)\longrightarrow \mathbb{N}$ given by$\sigma_{\omega}(v)=\sum_{u\in N_G(v)}\omega(vu)$ for every $v\in V(G)$. The edge-weighting $\omega$ is neighbour sum distinguishing if it yields a proper vertex-colouring $\sigma_{\omega}$, \emph{i.e.}, $\sigma_{\omega}(u)\neq \sigma_{\omega}(v)$ for every edge $uv$ of $G$.We investigate a neighbour sum distinguishing edge-weighting with local constraints, namely, we assume that the set of edges incident to a vertex of large degree is not monochromatic. A graph is nice if it has no components isomorphic to $K_2$. We prove that every nice graph with maximum degree at most~5 admits a neighbour sum distinguishing $(\Delta(G)+2)$-edge-weighting such that all the vertices of degree at least~2 are incident with at least two edges of different weights. Furthermore, we prove that every nice graph admits a neighbour sum distinguishing $7$-edge-weighting such that all the vertices of degree at least~6 are incident with at least two edges of different weights. Finally, we show that nice bipartite graphs admit a neighbour sum distinguishing $6$-edge-weighting such that all the vertices of degree at least~2 are incident with at least two edges of different weights.
翻译:以 $G 表示的 $k$- 顶值重量为 $2 美元 : E( G)\ longrightrow =1,\ ldots,k $。 以 G$ 的边加权自然引出一个 顶色 $\ sigma\\ omega} : V( G)\ longrightrow\ \ mathb{N} 由$\ sigma\\ omega} (v)\\ sum\\ in N_ G_ omga( vu) 每平面 $ 2 美元 : E( G)\ longrightrightrow =1,\ lockrightrightrightrrows,\\ yomega 美元 美元。 以 平面平面平面平面 $ $5, 以每平面每平面平面平面的平面, 以两平面平面的平面, 以两平面平色平面平面平面, 以两平色平面平面平面平面, 最平面平面平面平平平色平色平淡, 最平平平面,每平平平平平平平平平平平平平平平平平平地,每平平平平平平平平平平平平平平,最平平平平平平平平平平平平,最平平平平平平平平平平平平,最平,最平,最平平平平,平平平平平,平,平平平,平平平平平,平平平平平,平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平,平平平,平平平平平平,最平平平平平,平,平平平,平平平平平平平平平平平平平平平平平平平平平平平平平平平平平,最平,最平,最平,最平,最平平,最平,最平平平平,最平,最平平平平平平平,最平,最平,