A $k$-edge-weighting of $G$ is a mapping $\omega:E(G)\longrightarrow \{1,\ldots,k\}$. The edge-weighting of $G$ naturally induces a vertex-colouring $\sigma_{\omega}:V(G)\longrightarrow \mathbb{N}$ given by$\sigma_{\omega}(v)=\sum_{u\in N_G(v)}\omega(vu)$ for every $v\in V(G)$. The edge-weighting $\omega$ is neighbour sum distinguishing if it yields a proper vertex-colouring $\sigma_{\omega}$, \emph{i.e.}, $\sigma_{\omega}(u)\neq \sigma_{\omega}(v)$ for every edge $uv$ of $G$.We investigate a neighbour sum distinguishing edge-weighting with local constraints, namely, we assume that the set of edges incident to a vertex of large degree is not monochromatic. A graph is nice if it has no components isomorphic to $K_2$. We prove that every nice graph with maximum degree at most~5 admits a neighbour sum distinguishing $(\Delta(G)+2)$-edge-weighting such that all the vertices of degree at least~2 are incident with at least two edges of different weights. Furthermore, we prove that every nice graph admits a neighbour sum distinguishing $7$-edge-weighting such that all the vertices of degree at least~6 are incident with at least two edges of different weights. Finally, we show that nice bipartite graphs admit a neighbour sum distinguishing $6$-edge-weighting such that all the vertices of degree at least~2 are incident with at least two edges of different weights.


翻译:以 $G 表示的 $k$- 顶值重量为 $2 美元 : E( G)\ longrightrow =1,\ ldots,k $。 以 G$ 的边加权自然引出一个 顶色 $\ sigma\\ omega} : V( G)\ longrightrow\ \ mathb{N} 由$\ sigma\\ omega} (v)\\ sum\\ in N_ G_ omga( vu) 每平面 $ 2 美元 : E( G)\ longrightrightrow =1,\ lockrightrightrightrrows,\\ yomega 美元 美元。 以 平面平面平面平面 $ $5, 以每平面每平面平面平面的平面, 以两平面平面的平面, 以两平面平色平面平面平面, 以两平色平面平面平面平面, 最平面平面平面平平平色平色平淡, 最平平平面,每平平平平平平平平平平平平平平平平平平地,每平平平平平平平平平平平平平平,最平平平平平平平平平平平平,最平平平平平平平平平平平平,最平,最平,最平平平平,平平平平平,平,平平平,平平平平平,平平平平平,平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平,平平平,平平平平平平,最平平平平平,平,平平平,平平平平平平平平平平平平平平平平平平平平平平平平平平平平平,最平,最平,最平,最平,最平平,最平,最平平平平,最平,最平平平平平平平,最平,最平,

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
27+阅读 · 2020年6月19日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员