Brain tumor segmentation is a challenging problem in medical image analysis. The endpoint is to generate the salient masks that accurately identify brain tumor regions in an fMRI screening. In this paper, we propose a novel attention gate (AG model) for brain tumor segmentation that utilizes both the edge detecting unit and the attention gated network to highlight and segment the salient regions from fMRI images. This feature enables us to eliminate the necessity of having to explicitly point towards the damaged area(external tissue localization) and classify(classification) as per classical computer vision techniques. AGs can easily be integrated within the deep convolutional neural networks(CNNs). Minimal computional overhead is required while the AGs increase the sensitivity scores significantly. We show that the edge detector along with an attention gated mechanism provide a sufficient enough method for brain segmentation reaching an IOU of 0.78
翻译:在医学图像分析中,脑肿瘤截断是一个具有挑战性的问题。 端点是生成能准确识别FMRI筛查中脑肿瘤区域的突出面罩。 在本文中,我们提议为脑肿瘤截断提供一个新型的注意门(AG模型),利用边缘检测器和关注门网,利用边缘检测器和关注门网,突出和分割FMRI图像中的突出区域。这个特征使我们能够消除必须明确指向受损区域(外部组织局部化)和根据经典计算机视觉技术进行分类(分类)的必要性。 AG可以很容易地融入深层共振动神经网络(CNNs ) 。 AGs需要最小的计算间接成本,而AGs则大幅增加敏感度。 我们显示,边缘检测器与关注门机制一起提供了足以达到0.78 IOU的脑切分法。