Construction of optimal deformations is one of the long standing problems of computational mathematics. We consider the problem of computing quasi-isometric deformations with minimal possible quasi-isometry constant (global estimate for relative length change).We build our technique upon [Garanzha et al. 2021a], a recently proposed numerical optimization scheme that provably untangles 2D and 3D meshes with inverted elements by partially solving a finite number of minimization problems. In this paper we show the similarity between continuation problems for mesh untangling and for attaining prescribed deformation quality threshold. Both problems can be solved by a finite number of partial solutions of optimization problems which are based on finite element approximations of parameter-dependent hyperelastic functionals. Our method is based on a polyconvex functional which admits a well-posed variational problem. To sum up, we reliably build 2D and 3D mesh deformations with smallest known distortion estimates (quasi-isometry constants) as well as stable quasi conformal parameterizations for very stiff problems.
翻译:最佳变形的构建是计算数学长期存在的问题之一。 我们考虑的是计算准几何变形的问题, 并尽可能低可能的准几何常数( 对相对长度变化的全球估计 ) 。 我们以[Garanzha 等人 2021a] 为基础构建我们的技术。 最近提出的数字优化方案,通过部分解决一定数量的最小化问题,可以将 2D 和 3D 模形与倒置元素不相干。 在本文中,我们显示了介质解和达到规定的变形质量阈值的连续性问题之间的相似性。 两种问题都可以通过数量有限的优化问题部分解决方案来解决,这些解决方案都基于依赖参数的超弹性功能的有限元素近似值。 我们的方法是基于一个多孔形体功能, 它包含一个非常复杂的变异性问题。 总之, 我们可靠地构建了 2D 和 3D 模形变形, 并有最小已知的扭曲估计值( qis- estard ), 以及对于非常严重的问题具有稳定的准一致参数。