We revisit the classic Cournot model and extend it to a two-echelon supply chain with an upstream supplier who operates under demand uncertainty and multiple downstream retailers who compete over quantity. The supplier's belief about retail demand is modeled via a continuous probability distribution function F. If F has the decreasing generalized mean residual life (DGMRL) property, then the supplier's optimal pricing policy exists and is the unique fixed point of the mean residual life (MRL) function. This closed form representation of the supplier's equilibrium strategy facilitates a transparent comparative statics and sensitivity analysis. We utilize the theory of stochastic orderings to study the response of the equilibrium fundamentals - wholesale price, retail price and quantity - to different demand distribution parameters. We examine supply chain performance, in terms of the distribution of profits, supply chain efficiency, in terms of the Price of Anarchy, and complement our findings with numerical results.
翻译:我们重新审视典型的Cournot模式,并将其推广到由上游供应商组成的双层供应链,上游供应商在需求不确定的情况下运作,多个下游零售商在数量上竞争。供应商对零售需求的信念是通过连续概率分配功能F建模的。如果F拥有普遍平均剩余寿命(DGMRL)不断下降的剩余财产,那么供应商的最佳定价政策就已经存在,并且是平均剩余寿命(MRL)功能的独特固定点。这种封闭形式的供应商平衡战略代表有利于透明的比较静态和敏感度分析。我们利用随机订单理论研究平衡基本要素(批发价格、零售价格和数量)对不同需求分配参数的反应。我们从利润分配、供应链效率的角度审查供应链绩效,并以无政府体系价格补充我们的调查结果。