Millimeter wave (mmWave) and terahertz (THz) radio access technologies (RAT) are expected to become a critical part of the future cellular ecosystem providing an abundant amount of bandwidth in areas with high traffic demands. However, extremely directional antenna radiation patterns that need to be utilized at both transmit and receive sides of a link to overcome severe path losses, dynamic blockage of propagation paths by large static and small dynamic objects, macro- and micromobility of user equipment (UE) makes provisioning of reliable service over THz/mmWave RATs an extremely complex task. This challenge is further complicated by the type of applications envisioned for these systems inherently requiring guaranteed bitrates at the air interface. This tutorial aims to introduce a versatile mathematical methodology for assessing performance reliability improvement algorithms for mmWave and THz systems. Our methodology accounts for both radio interface specifics as well as service process of sessions at mmWave/THz base stations (BS) and is capable of evaluating the performance of systems with multiconnectivity operation, resource reservation mechanisms, priorities between multiple traffic types having different service requirements. The framework is logically separated into two parts: (i) parameterization part that abstracts the specifics of deployment and radio mechanisms, and (ii) queuing part, accounting for details of the service process at mmWave/THz BSs. The modular decoupled structure of the framework allows for further extensions to advanced service mechanisms in prospective mmWave/THz cellular deployments while keeping the complexity manageable and thus making it attractive for system analysts.


翻译:(mWave)和Thahertz(Thz)无线电接入技术(RAT)预计将成为未来蜂窝生态系统的关键组成部分,在交通需求高的地区提供大量带宽;然而,在传输和接收链路的两侧都需要使用极端方向天线辐射模式,以克服严重路径损失,大型静态和小型动态物体对传播路径的动态阻塞,用户设备(UE)的宏观和微移动使得在Thz/mmWave RAT系统上提供可靠的服务是一项极为复杂的任务。由于这些系统所设想的应用类型在空中界面上必然需要保证比特率的保证比特率,这一挑战将变得更加复杂。这个指导性的目的是采用一种多方向的数学方法,用以评估毫米Wave和Thz系统的性能可靠性改进算法。 我们的方法既说明无线电界面的具体特点,也说明在mmWave/Thz基站(UE)的运行服务进程,并且能够评估具有多个先进服务要求的系统、资源保留机制、多种交通类型之间的优先事项。这个框架在逻辑上分为两个部分,因此,用于部署具体射线路路路路路路路路路路路路结构,从而可以进行具体的计算。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月6日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员