We introduce a scheme for probabilistic hypocenter inversion with Stein variational inference. Our approach uses a differentiable forward model in the form of a physics informed neural network, which we train to solve the Eikonal equation. This allows for rapid approximation of the posterior by iteratively optimizing a collection of particles against a kernelized Stein discrepancy. We show that the method is well-equipped to handle highly multimodal posterior distributions, which are common in hypocentral inverse problems. A suite of experiments is performed to examine the influence of the various hyperparameters. Once trained, the method is valid for any seismic network geometry within the study area without the need to build travel time tables. We show that the computational demands scale efficiently with the number of differential times, making it ideal for large-N sensing technologies like Distributed Acoustic Sensing. The techniques outlined in this manuscript have considerable implications beyond just ray-tracing procedures, with the work flow applicable to other fields with computationally expensive inversion procedures such as full waveform inversion.
翻译:我们引入了一种以斯坦因变异推导法进行概率低温反转的办法。我们的方法使用一种不同的前方模型,其形式是物理学知情神经网络,我们训练它解决Eikonal等式。这样就可以通过迭代优化粒子集,防止内脏化的斯坦因差异,从而快速近似后部粒子。我们表明,这种方法非常适合处理高度多式后部分布,这在低中位反向问题中很常见。进行了一系列实验,以研究各种超光谱的影响。经过培训后,该方法对研究区内任何地震网络的几何方法都是有效的,不需要建立旅行时间表。我们表明计算要求与不同时间的数量相比是有效的,因此它对于分布式声学遥感等大型遥感技术是理想的。这一手稿中概述的技术具有相当大的影响,不仅仅是射线测量程序,而工作流则适用于诸如全波变换等计算成本高的转换程序的其他领域。