In this paper, a methodology is proposed that enables to analyze the sensitivity of the outcome of a therapy to unavoidable high dispersion of the patient specific parameters on one hand and to the choice of the parameters that define the drug delivery feedback strategy on the other hand. More precisely, a method is given that enables to extract and rank the most influent parameters that determine the probability of success/failure of a given feedback therapy for a given set of initial conditions over a cloud of realizations of uncertainties. Moreover predictors of the expectations of the amounts of drugs being used can also be derived. This enables to design an efficient stochastic optimization framework that guarantees safe contraction of the tumor while minimizing a weighted sum of the quantities of the different drugs being used. The framework is illustrated and validated using the example of a mixed therapy of cancer involving three combined drugs namely: a chemotherapy drug, an immunology vaccine and an immunotherapy drug. Finally, in this specific case, it is shown that dash-boards can be built in the 2D-space of the most influent state components that summarize the outcomes' probabilities and the associated drug usage as iso-values curves in the reduced state space.
翻译:本文提出一种方法,能够分析治疗结果的敏感性,从而避免病人特定参数的高度分散,并选择确定药物提供反馈战略的参数。更准确地说,可以分析治疗结果的敏感性,以便分析治疗结果的敏感性,从而避免病人特定参数的高度分散,并分析对确定药物提供反馈战略的参数的选择。更准确地说,可以分析一种方法,能够提取和排列最易感染的参数,从而确定在不确定认识的云层上某组初始条件的某种反馈疗法成功/失败的可能性。此外,还可以得出对所用药物数量预期值的预测。这样可以设计一个高效的随机优化框架,保证肿瘤的安全收缩,同时尽量减少所使用不同药物数量的加权总和。这个框架使用一种混合疗法的例子,即涉及三种混合药物的混合疗法:化疗药、免疫疫苗和免疫疗法药物。最后,在这种特定情况下,可以证明破碎板可以建在最易感染的状态的2D空间中,这些成分可以总结结果的概率和相关的药物使用量,即空间值下降状态的空间曲线。