We present an additive approach for the inverse design of kirigami-based mechanical metamaterials by focusing on the design of the negative spaces instead of the kirigami tiles. By considering each negative space as a four-bar linkage, we discover a simple recursive relationship between adjacent linkages, yielding an efficient method for creating kirigami patterns. This shift in perspective allows us to solve the kirigami design problem using elementary linear algebra, with compatibility, reconfigurability and rigid-deployability encoded into an iterative procedure involving simple matrix multiplications. The resulting linear design strategy circumvents the solution of non-convex global optimization problems and allows us to control the degrees of freedom in the deployment angle field, linkage offsets and boundary conditions. We demonstrate this by creating a large variety of rigid-deployable, compact reconfigurable kirigami patterns. We then realize our kirigami designs physically using two new simple but effective fabrication strategies with very different materials. All together, our additive approaches pave a new way for mechanical metamaterial design and fabrication based on paper-based (ori/kiri-gami) art forms.
翻译:我们通过注重设计负空格而不是千里加米瓷砖,为基里加美机械元材料的反向设计提出了一种添加方法。通过将每个负空间视为四条连接,我们发现了相邻连接之间的简单循环关系,产生了一种创造千里加美模式的有效方法。这种观点的转变使我们能够使用初级线性代数来解决基里加美设计问题,这种代数具有兼容性、可调和性和僵硬可调适性,并编码成一个迭接程序,包括简单的矩阵乘法。由此产生的线性设计战略绕过了非康韦克斯全球优化问题的解决方案,使我们能够控制部署角度字段的自由程度、联系的抵消和边界条件。我们通过创造大量硬易调、紧凑的可调和可调和的千里加米模式来证明这一点。然后,我们用两种新的简单而有效的制造策略,用非常不同的材料实现我们的千里加尼加美设计。所有我们添加的方法都为基于纸基(ori/kirigami)艺术形式的机械元设计和制造铺了一条新的途径。