Multiple testing is a fundamental problem in high-dimensional statistical inference. Although many methods have been proposed to control false discoveries, it is still a challenging task when the tests are correlated to each other. To overcome this challenge, various methods have been proposed to estimate the false discovery rate (FDR) and/or the false discovery proportion (FDP) under arbitrary covariance among the test statistics. An interesting finding of these works is that the estimation of FDP and FDR under weak dependence is identical to that under independence. However, Mei et al. (2021) pointed out that unlike FDR, the asymptotic variance of FDP can still differ drastically from that under independence, and the difference depends on the covariance structure among the test statistics. In this paper, we further extend this result from $z$-tests to $t$-tests when the marginal variances are unknown and need to be estimated. With weakly dependent $t$-tests, we show that FDP still converges to a fixed quantity unrelated to the dependence structure, and further derive the asymptotic expansion and uncertainty of FDP leading to similar results as in Mei et al. (2021). In addition, we develop an approximation method to efficiently evaluate the asymptotic variance of FDP for dependent $t$-tests. We examine how the asymptotic variance of FDP varies as well as the performance of its estimators under different dependence structures through simulations and a real-data study.
翻译:虽然提出了许多方法来控制虚假发现,但当测试相互关联时,这仍是一项具有挑战性的任务。为了克服这一挑战,提出了各种方法来估计测试统计数据中任意共差的虚假发现率(FDR)和(或)虚假发现比例(FDP),在测试统计数据中任意的共差下,提出了各种方法来估计虚假发现率(FDP)和(或)虚假发现比例(FDP),这些工作的一个有趣的发现是,对依赖度弱的FDP和FDR的估计与独立时相同。然而,Mei等人(2021年)指出,与FDR不同的是,FDP的无规律差异仍然与独立时期不同,而FDP的无规律差异仍然与独立时期不同,这种差异取决于测试统计数据中的差异结构。在本文件中,我们进一步将美元测试的结果扩大到当边际差异不为人所知且需要估计时的美元测试。我们发现,由于依赖度低的美元,FDP的估算仍然与依赖度结构不相适应,我们发现FDP的固定数量仍然一致,并进一步发现FDP的不确定性的扩展和不确定性的不确定性使得FDP的不确定性研究的结果与MI和AL(2021年的汇率的估价方法之下如何进行。