Neural Radiance Fields (NeRF) have achieved impressive results in 3D reconstruction and novel view generation. A significant challenge within NeRF involves editing reconstructed 3D scenes, such as object removal, which demands consistency across multiple views and the synthesis of high-quality perspectives. Previous studies have integrated depth priors, typically sourced from LiDAR or sparse depth estimates from COLMAP, to enhance NeRF's performance in object removal. However, these methods are either expensive or time-consuming. This paper proposes a new pipeline that leverages SpinNeRF and monocular depth estimation models like ZoeDepth to enhance NeRF's performance in complex object removal with improved efficiency. A thorough evaluation of COLMAP's dense depth reconstruction on the KITTI dataset is conducted to demonstrate that COLMAP can be viewed as a cost-effective and scalable alternative for acquiring depth ground truth compared to traditional methods like LiDAR. This serves as the basis for evaluating the performance of monocular depth estimation models to determine the best one for generating depth priors for SpinNeRF. The new pipeline is tested in various scenarios involving 3D reconstruction and object removal, and the results indicate that our pipeline significantly reduces the time required for the acquisition of depth priors for object removal and enhances the fidelity of the synthesized views, suggesting substantial potential for building high-fidelity digital twin systems with increased efficiency in the future.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2023年6月23日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
14+阅读 · 2022年5月14日
Arxiv
27+阅读 · 2021年11月11日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
25+阅读 · 2023年6月23日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
14+阅读 · 2022年5月14日
Arxiv
27+阅读 · 2021年11月11日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
11+阅读 · 2018年4月8日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员