It is well known that the R, the set of real numbers, is an abstract set, where almost all its elements cannot be described in any finite language. We investigate possible approaches to what might be called an epi-constructionist approach to mathematics. While most constructive mathematics is concerned with constructive proofs, the agenda here is that the objects that we study, specifically the class of numbers that we study, should be an enumerable set of finite symbol strings. These might also be called decidable constructive real numbers, that is our class of numbers should be a computable sets of explicitly represented computable numbers. There have been various investigations of the computable numbers going back to Turing. Most are however not expressed constructively, rather computable is a property assigned to some of the abstract real numbers. Other definitions define constructive real numbers without reference to the abstract R, but the construction is undecidable, i.e., we cannot determine if a given construction represents a computable real number or not. For example, we may define a real as a computable convergent sequence of rationals, but cannot in general decide if a given computable sequence is convergent. This paper explores several specific classes of decidable constructive real numbers that could form foundational objects for what we might call an epi-constructionist mathematics.
翻译:众所周知, R 是真实数字的一组, 是一个抽象的集合, 几乎它的所有元素都无法用任何限定语言描述。 我们调查了对数学的可计算数字可能采取的方法。 虽然大多数具有建设性的数学都涉及到建设性的证明, 但这里的议程是, 我们研究的对象, 特别是我们研究的数字类别, 应该是一个可量化的有限符号字符串。 这些也可以称为可变的建设性真实数字, 也就是我们的数字类别应该是一个可计算、 明确代表的可计算数字组。 已经对返回图灵的可计算数字进行了各种调查。 然而, 多数不是以建设性的方式表达的, 而是以抽象真实数字的属性。 其它定义定义了建设性的真实数字, 而不参考抽象的 R, 但构建是不可量化的。 也就是说, 我们无法确定一个特定构造是否代表一个可计算的真实真实的实际数字, 也就是说, 我们可能把一个真实的可计算和可比较的可比较的可比较的可计算数序列 。 但是, 一般来说, 我们无法决定一个真实的可折数的折数序列是多少个 。