We consider the coupled system of equations that describe flow in fractured porous media. To describe such types of problems, multicontinuum and multiscale approaches are used. Because in multicontinuum models, the permeability of each continuum has a significant difference, a large number of iterations is required for the solution of the resulting linear system of equations at each time iteration. The presented decoupling technique separates equations for each continuum that can be solved separately, leading to a more efficient computational algorithm with smaller systems and faster solutions. This approach is based on the additive representation of the operator with semi-implicit approximation by time, where the continuum coupling part is taken from the previous time layer. We apply, analyze and numerically investigate decoupled schemes for classical multicontinuum problems in fractured porous media on sufficiently fine grids with finite volume approximation. We show that the decoupled schemes are stable, accurate, and computationally efficient. Next, we extend and investigate this approach for multiscale approximation on the coarse grid using the nonlocal multicontinuum (NLMC) method. In NLMC approximation, we construct similar decoupled schemes with the same continuum separation approach. A numerical investigation is presented for model problems with two and three-continuum in the two-dimensional formulation.


翻译:我们考虑了描述断裂多孔介质流动的组合方程式系统。 为了描述这类类型的问题,我们采用了多连续线和多尺度方法。由于在多连续线模型中,每个连续线的渗透性差异很大,因此每次迭代都需要大量迭代来解决由此产生的线性方程式系统。我们介绍的脱钩技术将每个连续线系统分离的方程式分开,可以分开解决,从而产生一种效率更高的计算算法,使用较小的系统和更快的解决方案。这个方法基于操作者对半隐性近似时间的附加代表,即连续连接部分从前一个时层中取出。我们应用、分析和从数字上调查了在裂开式的多孔介质介质介质中典型多共性多共性问题的脱钩办法。我们用非本地多相近的模型(NLMC)方法扩展并调查了这一多级近似近似近似方法。在NLMC中,我们用两个连续线的离解式方法构建了两个数字直径直径方方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员