Active matter physics and swarm robotics have provided powerful tools for the study and control of ensembles driven by internal sources. At the macroscale, controlling swarms typically utilizes significant memory, processing power, and coordination unavailable at the microscale, e.g., for colloidal robots, which could be useful for fighting disease, fabricating intelligent textiles, and designing nanocomputers. To develop principles that that can leverage physics of interactions and thus can be utilized across scales, we take a two-pronged approach: a theoretical abstraction of self-organizing particle systems and an experimental robot system of active cohesive granular matter that intentionally lacks digital electronic computation and communication, using minimal (or no) sensing and control, to test theoretical predictions. We consider the problems of aggregation, dispersion, and collective transport. As predicted by the theory, as a parameter representing interparticle attraction increases, the robots transition from a dispersed phase to an aggregated one, forming a dense, compact collective. When aggregated, the collective can transport non-robot "impurities" in their environment, thus performing an emergent task driven by the physics underlying the transition. These results point to a fruitful interplay between algorithm design and active matter robophysics that can result in new nonequilibrium physics and principles for programming collectives without the need for complex algorithms or capabilities.
翻译:活性物质物理学和群温机器人为研究和控制由内部来源驱动的集合提供了强大的工具。 在宏观尺度上,控制群群通常使用微尺度上无法使用的重要记忆、处理力和协调,例如对凝固机器人来说,对于抗病、造织智能纺织品和设计纳米计算机可能有用。为了制定能够利用相互作用物理学并因此可以跨级使用的原则,我们采取了双管齐下的方法:从理论上抽象地抽取自我组织粒子系统和实验机器人系统,由主动内聚的颗粒物质组成,它故意缺乏数字电子计算和通信,使用最低限度(或没有)的感测和控制,以测试理论预测。我们考虑了聚合、分散和集体运输的问题。根据理论的预测,作为一个代表粒子吸引力增加的参数,机器人从一个分散的阶段向一个综合阶段过渡,形成一个密集、紧凑的集体。当加起来,集体可以在其环境中运输非机器人的“缺陷”,从而执行由物理物理原理驱动的急转任务,而无需进行物理物理结构分析,这些结果可以用来进行积极的物理结构分析。