Active matter physics and swarm robotics have provided powerful tools for the study and control of ensembles driven by internal sources. At the macroscale, controlling swarms typically utilizes significant memory, processing power, and coordination unavailable at the microscale, e.g., for colloidal robots, which could be useful for fighting disease, fabricating intelligent textiles, and designing nanocomputers. To develop principles that that can leverage physics of interactions and thus can be utilized across scales, we take a two-pronged approach: a theoretical abstraction of self-organizing particle systems and an experimental robot system of active cohesive granular matter that intentionally lacks digital electronic computation and communication, using minimal (or no) sensing and control, to test theoretical predictions. We consider the problems of aggregation, dispersion, and collective transport. As predicted by the theory, as a parameter representing interparticle attraction increases, the robots transition from a dispersed phase to an aggregated one, forming a dense, compact collective. When aggregated, the collective can transport non-robot "impurities" in their environment, thus performing an emergent task driven by the physics underlying the transition. These results point to a fruitful interplay between algorithm design and active matter robophysics that can result in new nonequilibrium physics and principles for programming collectives without the need for complex algorithms or capabilities.


翻译:活性物质物理学和群温机器人为研究和控制由内部来源驱动的集合提供了强大的工具。 在宏观尺度上,控制群群通常使用微尺度上无法使用的重要记忆、处理力和协调,例如对凝固机器人来说,对于抗病、造织智能纺织品和设计纳米计算机可能有用。为了制定能够利用相互作用物理学并因此可以跨级使用的原则,我们采取了双管齐下的方法:从理论上抽象地抽取自我组织粒子系统和实验机器人系统,由主动内聚的颗粒物质组成,它故意缺乏数字电子计算和通信,使用最低限度(或没有)的感测和控制,以测试理论预测。我们考虑了聚合、分散和集体运输的问题。根据理论的预测,作为一个代表粒子吸引力增加的参数,机器人从一个分散的阶段向一个综合阶段过渡,形成一个密集、紧凑的集体。当加起来,集体可以在其环境中运输非机器人的“缺陷”,从而执行由物理物理原理驱动的急转任务,而无需进行物理物理结构分析,这些结果可以用来进行积极的物理结构分析。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员