In this article, we propose high-order finite-difference entropy stable schemes for the two-fluid relativistic plasma flow equations. This is achieved by exploiting the structure of the equations, which consists of three independent flux components. The first two components describe the ion and electron flows, which are modeled using the relativistic hydrodynamics equation. The third component is Maxwell's equations, which are linear systems. The coupling of the ion and electron flows, and electromagnetic fields is via source terms only. Furthermore, we also show that the source terms do not affect the entropy evolution. To design semi-discrete entropy stable schemes, we extend the RHD entropy stable schemes in Bhoriya et al. to three dimensions. This is then coupled with entropy stable discretization of the Maxwell's equations. Finally, we use SSP-RK schemes to discretize in time. We also propose ARK-IMEX schemes to treat the stiff source terms; the resulting nonlinear set of algebraic equations is local (at each discretization point). These equations are solved using the Newton's Method, which results in an efficient method. The proposed schemes are then tested using various test problems to demonstrate their stability, accuracy and efficiency.
翻译:在此篇文章中, 我们为双流相对性等离子流流方程式提出高顺序的有限差异性恒定方案。 这是通过利用由三个独立的通量组件组成的方程式结构实现的。 前两个组成部分描述离子流和电子流, 它们是使用相对性流体动力学方程式建模的。 第三个组成部分是马克斯韦尔的方程式, 它们是线性系统。 离子流和电子流以及电磁场的组合只是通过源术语。 此外, 我们还表明源术语不会影响酶变异。 要设计由三个独立的通量元件组成的半dicrete entropy 稳定方案, 我们将Bhoriya 和 al. 的RHD entropy 稳定方案扩展为三个维度。 然后, 与马克斯韦尔的方程式的酶稳定化相配合。 最后, 我们使用SSP- RK 计划来进行时间分解。 我们还建议 ARK- IMEX 计划处理硬源术语; 由此形成的向量系方程式的非线性方程式, 将使用各种离心形方程式的精度公式加以解。 这些方法都用新方程式的测试方法来解。