We introduce an adaptive refinement procedure for smart, and scalable abstraction of dynamical systems. Our technique relies on partitioning the state space depending on the observation of future outputs. However, this knowledge is dynamically constructed in an adaptive, asymmetric way. In order to learn the optimal structure, we define a Kantorovich-inspired metric between Markov chains, and we use it as a loss function. Our technique is prone to data-driven frameworks, but not restricted to. We also study properties of the above mentioned metric between Markov chains, which we believe could be of application for wider purpose. We propose an algorithm to approximate it, and we show that our method yields a much better computational complexity than using classical linear programming techniques.
翻译:我们引入了一种自适应细化程序,用于对动态系统进行智能、可扩展的抽象。我们的技术依赖于根据未来输出的观察对状态空间进行分割。然而,这种知识是以自适应、不对称的方式动态构建的。为了学习最优结构,我们定义了一种基于Kantorovich的度量来衡量马尔科夫链之间的距离,并将其用作损失函数。我们的技术易于用于数据驱动的框架,但并不受此限制。同时,我们还研究了马尔科夫链之间上述度量的性质,并且认为它对更广泛的应用可能有意义。我们提出了一种算法来逼近它,同时表明我们的方法的计算复杂度远低于使用传统线性规划技术。