Many scientific questions in biomedical, environmental, and psychological research involve understanding the effects of multiple factors on outcomes. While factorial experiments are ideal for this purpose, randomized controlled treatment assignment is generally infeasible in many empirical studies. Therefore, investigators must rely on observational data, where drawing reliable causal inferences for multiple factors remains challenging. As the number of treatment combinations grows exponentially with the number of factors, some treatment combinations can be rare or missing by chance in observed data, further complicating factorial effects estimation. To address these challenges, we propose a novel weighting method tailored to observational studies with multiple factors. Our approach uses weighted observational data to emulate a randomized factorial experiment, enabling simultaneous estimation of the effects of multiple factors and their interactions. Our investigations reveal a crucial nuance: achieving balance among covariates, as in single-factor scenarios, is necessary but insufficient for unbiasedly estimating factorial effects; balancing the factors is also essential in multi-factor settings. Moreover, we extend our weighting method to handle missing treatment combinations in observed data. Finally, we study the asymptotic behavior of the new weighting estimators and propose a consistent variance estimator, providing reliable inferences on factorial effects in observational studies.
翻译:暂无翻译